In Vivo Tissue-level Thresholds for Spinal Cord Injury
نویسندگان
چکیده
Primary damage to the blood-spinal cord barrier (BSCB) is a nearly universal consequence of spinal cord injury that contributes significantly to the overall pathology. We have characterized quantitatively the extent and severity of primary, physical disruption of the BSCB in adult rats five minutes and fifteen minutes after graded trauma induced with the Impactor weight drop model of spinal cord contusion. Animals were injured by dropping a 10g mass 12.5, 25, or 50mm (nlevel=8) on to the exposed mid-thoracic spinal cord. The volume of extravasation of three markers of distinct size – fluorescently labeled hydrazide (~730Da), fluorescently labeled bovine serum albumin (~70kDa), and immunohistochemically labeled red blood cells (~5μm dia) were quantified in both the gray and white matter. The results indicate that spinal cord trauma causes immediate, non-specific vascular changes that are well-predicted by mechanical parameters. Extravasation volume increased significantly with increasing drop height and decreasing marker size. Extravasation volumes for all three markers were greater in gray matter than in white matter, and were better correlated to the rate of spinal cord compression than to the depth of spinal cord compression, which suggests that tissue-level strain rate effects contribute to primary spinal cord microvasculature pathology. The relationship between the response of the spinal cord and the injury pattern points towards opportunities to control the distribution and extent of injury patterns in animal models of spinal cord injury through a precise understanding of model and tissue biomechanics, as well as potential improvements in means of preventing
منابع مشابه
Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage
Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...
متن کاملO2: Flaxseed Reduces Proinflammatory Factors IL-1β, IL-18 and TNF-α in Injured Spinal Cord Rat Model
The pathophysiology of acute spinal cord injury (SCI) involves primary and secondary mechanisms of injury. Secondary injury mechanisms include inflammation, oxidative stress. The secondary inflammation of spinal cord tissue after SCI was critical for the survival of motor neuron and functional recovery. Flaxseed is a rich source of lignan phytoestrogen, α-linolenic acid. Flaxseed has rema...
متن کاملEffects of Epigallocatechin Gallate on Tissue Lipid Peroxide Levels in Traumatized Spinal Cord of Rat
Objective(s) Recent studies revealed the neuroprotective effects of epigallocatechin gallate (EGCG) on a variety of neural injury .The purpose of this study was to determine the effects of EGCG on the tissue lipid peroxidation after spinal cord injury (SCI). Materials and Methods Rats were randomly divided into four groups of 7 rats each as follows: sham-operated group, trauma group, and EGC...
متن کاملA clinically oriented experiment on the effect of mixed culture of neonate spinal cord transplantation on recovery of spinal cord injury
In spinal cord injuries, direct trauma by edges of sublaxated or dislocated vertebrae and indirect ischemia as a result of vascular injury necrotize the neural tissue. After spinal cord injury, tissue loss appears as micro- or macrocavitation. Accumulations of non-neuronal cells substitute spared tissue and halts axon regrowth. Lack of supporting cells (secreting trophic factors and matrix) agg...
متن کاملEpidemiology of traumatic spinal cord injury: The substantial role of imaging methods
Background and aims: One of the most common injuries around the world is the traumatic injury of the spine and spinal cord with unknown worldwide situation of traumatic spinal cord injury (TSCI) affecting on the effectiveness of preventive policy programs. In addition, because of possibility of making paralysis, the potential injury to the spine could be one of the most importa...
متن کاملA clinically oriented experiment on the effect of mixed culture of neonate spinal cord transplantation on recovery of spinal cord injury
In spinal cord injuries, direct trauma by edges of sublaxated or dislocated vertebrae and indirect ischemia as a result of vascular injury necrotize the neural tissue. After spinal cord injury, tissue loss appears as micro- or macrocavitation. Accumulations of non-neuronal cells substitute spared tissue and halts axon regrowth. Lack of supporting cells (secreting trophic factors and matrix) agg...
متن کامل